
Aspect Oriented
Programming

Neill Rolando Giraldo Corredor1

Iván Darío Vanegas Pérez1

1. Facultad de Ingeniería, Departamento de Sistemas e Industrial

Content ● Introduction
○ Main Goal
○ Emerging Programming Problems
○ Advanced Separation of Concerns
○ Programming Paradigms

● History & Previous Work
○ Brief Timeline
○ Reflection
○ Metaobjects Protocol
○ Subject Oriented Programming
○ Composition Filters
○ Adaptive Programming

Content ● Concepts
○ Aspect
○ JoinPoint
○ Advice
○ CutPoint
○ Target
○ Proxy
○ Weaving

● Development Example
● Advantages & Disadvantages
● Criticism
● Conclusions
● Review
● Bibliography

INTRODUCTION

AOP
OBJECTIVE

● The main goal of this paradigm is to separate
into well-defined modules the core
functionalities and logic data details of the
whole system and its components from those of
common use across them.

 // More operations similar to above
 public void save(PersitanceStorage ps) {
 }
 public void load(PersitanceStorage ps) {
 }
}

public class SomeBusinessClass extends
OtherBusinessClass {
 // Core data members
 // Other data members: Log stream,
data-consistency flag
 // Override methods in the base class
 public void
performSomeOperation(OperationInformation info) {
 // Ensure authentication
 // Ensure info satisfies contracts
 // Lock the object to ensure data-consistency in
case other
 // threads access it
 // Ensure the cache is up to date
 // Log the start of operation
 // ==== Perform the core operation ====
 // Log the completion of operation
 // Unlock the object
 }

Programming
Problematic

● Scattered Code
○ Functionalities that appear on more

than one class, method or entity
○ Security-operations

● Tangled Code
○ Different mixes of code across basic

functionality-line that imply a
hard-to-follow execution flow

○ Transactions, logging

*Concern := set of information (from data or processes) that has an effect
on the code of a computer application

Fig 2. http://ferestrepoca.github.io/paradigmas-de-programacion/
poa/poa_teoria/index.html

http://ferestrepoca.github.io/

Advanced Separation of Concerns (ASoC)

● Concerns
○ Main Functionality
○ Common Functionality - Crosscutting Concerns

● Advantages
○ Clarity
○ Adaptability
○ Maintainability
○ Scalability
○ Reusability

Programming Paradigms
● 1st: Procedural

● 2nd and 3rd: Functional Decomposition;

● 4th: POO

Fig 3 . http://images.slideplayer.es/12/3583443/slides/slide_4.jpg

Fig 4 & 5 http://images.slideplayer.es/12/3583443/slides/slide_4.jpg

HISTORY & PREVIOUS WORK

Timeline

1970:
Edsger W.
Dijkstra.
Introduced
the concept
“Separation
of Concerns”

1982:
Introduction of
Reflection in
Procedural
PL.

1980:
SmallTalk-80
introducing
Meta Object
Protocol.

1993:
Introduction of
Subject
Oriented
Programming

1994:
Introduction of
Composition
Filter Object
Model

1997:
Gregor
Kiczales
Introduced
of AOP
concepts

199X:
Introduction of
Adaptive
Programming

2001:
Xerox PARC
designed
AspectJ

2001: IBM
designed
HyperJ

2001:
AspectC++
Aspect (Perl)
2006:
phpAspect

Timeline

1970:
Edsger W.
Dijkstra.
Introduced
the concept
“Separation
of Concerns”

1982:
Introduction of
Reflection in
Procedural
PL.

1980:
SmallTalk-80
introducing
Meta Object
Protocol.

1993:
Introduction of
Subject
Oriented
Programming

1994:
Introduction of
Composition
Filter Object
Model

1997:
Gregor
Kiczales
Introduced
of AOP
concepts

199X:
Introduction of
Adaptive
Programming

2001:
Xerox PARC
designed
AspectJ

2001: IBM
designed
HyperJ

2001:
AspectC++
Aspect (Perl)
2006:
phpAspect

Timeline

1970:
Edsger W.
Dijkstra.
Introduced
the concept
“Separation
of Concerns”

1982:
Introduction of
Reflection in
Procedural
PL.

1980:
SmallTalk-80
introducing
Meta Object
Protocol.

1993:
Introduction of
Subject
Oriented
Programming

1994:
Introduction of
Composition
Filter Object
Model

1997:
Gregor
Kiczales
Introduced
of AOP
concepts

199X:
Introduction of
Adaptive
Programming

2001:
Xerox PARC
designed
AspectJ

2001: IBM
designed
HyperJ

2001:
AspectC++
Aspect (Perl)
2006:
phpAspect

Meta-Object
Protocol A ‘MOP’ Provides the vocabulary (protocol) to access

and manipulate the structure and behaviour of
systems of objects

● Create or delete a new class
● Create a new property or method
● Cause a class to inherit from a different class

("change the class structure")
● Generate or change the code defining the

methods of a class

https://en.wikipedia.org/wiki/Protocol_(object-oriented_programming)

How many levels of Depth levels can
recursively declare a MetaObject?

● None, a metaobject cannot declare
anything recursively

● Several
● Depends on meta-details nature

specification

Timeline

1970:
Edsger W.
Dijkstra.
Introduced
the concept
“Separation
of Concerns”

1982:
Introduction of
Reflection in
Procedural
PL.

1980:
SmallTalk-80
introducing
Meta Object
Protocol.

1993:
Introduction of
Subject
Oriented
Programming

1994:
Introduction of
Composition
Filter Object
Model

1997:
Gregor
Kiczales
Introduced
of AOP
concepts

199X:
Introduction of
Adaptive
Programming

2001:
Xerox PARC
designed
AspectJ

2001: IBM
designed
HyperJ

2001:
AspectC++
Aspect (Perl)
2006:
phpAspect

Reflection
“Reflection is the ability of a computer program to

examine, introspect and modify its own structure or
behavior at runtime”[1]

In OO programming languages reflection allows:

● Inspection:
○ Classes
○ Interfaces
○ Fields
○ Methods

● Instantiation of Objects
● Invocation of Methods

[1] J. Malenfant, M. Jacques and F.-N. Demers, A Tutorial on Behavioral Reflection and its
Implementation.

PROGRAMMING EXAMPLES

Is It possible to add dynamic code after
compile time only using reflection in Java?

● Yes

● No

Timeline

1970:
Edsger W.
Dijkstra.
Introduced
the concept
“Separation
of Concerns”

1982:
Introduction of
Reflection in
Procedural
PL.

1980:
SmallTalk-80
introducing
Meta Object
Protocol.

1993:
Introduction of
Subject
Oriented
Programming

1994:
Introduction of
Composition
Filter Object
Model

1997:
Gregor
Kiczales
Introduced
of AOP
concepts

199X:
Introduction of
Adaptive
Programming

2001:
Xerox PARC
designed
AspectJ

2001: IBM
designed
HyperJ

2001:
AspectC++
Aspect (Perl)
2006:
phpAspect

Subject
Oriented
Programming

“It is an object-oriented software paradigm in which
the state and behavior of objects are not seen as
plain objects, but the perceptions of themselves”[1]

Philosophical analogy of Plato over ideal & real
world applied to software.

● An object exists because is perceived by
another object => Subjects.

[1] William Harrison and Harold Ossher, Subject-Oriented Programming - A Critique of Pure Objects,
Proceedings of 1993 Conference on Object-Oriented Programming Systems, Languages, and
Applications, September 1993

Timeline

1970:
Edsger W.
Dijkstra.
Introduced
the concept
“Separation
of Concerns”

1982:
Introduction of
Reflection in
Procedural
PL.

1980:
SmallTalk-80
introducing
Meta Object
Protocol.

1993:
Introduction of
Subject
Oriented
Programming

1994:
Introduction of
Composition
Filter Object
Model

1997:
Gregor
Kiczales
Introduced
of AOP
concepts

199X:
Introduction of
Adaptive
Programming

2001:
Xerox PARC
designed
AspectJ

2001: IBM
designed
HyperJ

2001:
AspectC++
Aspect (Perl)
2006:
phpAspect

Composition
Filters “Composition filters changes the behavior of an

object through the manipulation of incoming and
outgoing messages.”

● Design of a Composition Filter
○ Kernel or Implementation Part
○ Outer layer or Interface Part

Timeline

1970:
Edsger W.
Dijkstra.
Introduced
the concept
“Separation
of Concerns”

1982:
Introduction of
Reflection in
Procedural
PL.

1980:
SmallTalk-80
introducing
Meta Object
Protocol.

1993:
Introduction of
Subject
Oriented
Programming

1994:
Introduction of
Composition
Filter Object
Model

1997:
Gregor
Kiczales
Introduced
of AOP
concepts

199X:
Introduction of
Adaptive
Programming

2001:
Xerox PARC
designed
AspectJ

2001: IBM
designed
HyperJ

2001:
AspectC++
Aspect (Perl)
2006:
phpAspect

Adaptive
Programming

● Shy system
concerns

● Loose Coupling
● Previous to POO
● DEMETER LAW

http://ferestrepoca.github.io/paradigmas-de-programacion/poa/poa
_teoria/Pages/historia.html

http://ferestrepoca.github.io/paradigmas-de-programacion/poa/poa_teoria/Pages/historia.html
http://ferestrepoca.github.io/paradigmas-de-programacion/poa/poa_teoria/Pages/historia.html
http://ferestrepoca.github.io/paradigmas-de-programacion/poa/poa_teoria/Pages/historia.html

Timeline

1970:
Edsger W.
Dijkstra.
Introduced
the concept
“Separation
of Concerns”

1982:
Introduction of
Reflection in
Procedural
PL.

1980:
SmallTalk-80
introducing
Meta Object
Protocol.

1993:
Introduction of
Subject
Oriented
Programming

1994:
Introduction of
Composition
Filter Object
Model

1997:
Gregor
Kiczales
Introduced
of AOP
concepts

199X:
Introduction of
Adaptive
Programming

2001:
Xerox PARC
designed
AspectJ

2001: IBM
designed
HyperJ

2001:
AspectC++
Aspect (Perl)
2006:
phpAspect

Timeline

1970:
Edsger W.
Dijkstra.
Introduced
the concept
“Separation
of Concerns”

1982:
Introduction of
Reflection in
Procedural
PL.

1980:
SmallTalk-80
introducing
Meta Object
Protocol.

1993:
Introduction of
Subject
Oriented
Programming

1994:
Introduction of
Composition
Filter Object
Model

1997:
Gregor
Kiczales
Introduced
of AOP
concepts

199X:
Introduction of
Adaptive
Programming

2001:
Xerox PARC
designed
AspectJ

2001: IBM
designed
HyperJ

2001:
AspectC++
Aspect (Perl)
2006:
phpAspect

Is it true that AP evolves from AOP?

● Yes
● No

Timeline

1970:
Edsger W.
Dijkstra.
Introduced
the concept
“Separation
of Concerns”

1982:
Introduction of
Reflection in
Procedural
PL.

1980:
SmallTalk-80
introducing
Meta Object
Protocol.

1993:
Introduction of
Subject
Oriented
Programming

1994:
Introduction of
Composition
Filter Object
Model

1997:
Gregor
Kiczales
Introduced
of AOP
concepts

199X:
Introduction of
Adaptive
Programming

2001:
Xerox PARC
designed
AspectJ

2001: IBM
designed
HyperJ

2001:
AspectC++
Aspect (Perl)
2006:
phpAspect

Timeline

1970:
Edsger W.
Dijkstra.
Introduced
the concept
“Separation
of Concerns”

1982:
Introduction of
Reflection in
Procedural
PL.

1980:
SmallTalk-80
introducing
Meta Object
Protocol.

1993:
Introduction of
Subject
Oriented
Programming

1994:
Introduction of
Composition
Filter Object
Model

1997:
Gregor
Kiczales
Introduced
of AOP
concepts

199X:
Introduction of
Adaptive
Programming

2001:
Xerox PARC
designed
AspectJ

2001: IBM
designed
HyperJ

2001:
AspectC++
Aspect (Perl)
2006:
phpAspect

Who was the founder of the Aspect Oriented
Programming?

● Edsger W. Dijkstra
● IBM
● Gregor Kiczales

Main Concepts

Aspect

● A component that can not be
fully encapsulated into a
generalized procedure that can
either be:

○ Method
○ Object
○ API.

● Tend to be non-functional
decomposition of the system,
that usually affects performance
or semantic of the System.

What is an Aspect?

Aspect
● A modular unit that disseminate through

different functional unit of a system(Crosscut).

● Are the implementation of what is known as
CrossCut Concerns.

● Identifying Aspects and applying Aspect
Oriented Programming techniques an adequate
Concern Separation can be accomplished
easier.

What is an Aspect?

● Possible places of actual
business logic execution
flow where advices can be
executed

● Defined on object
component Class

Join Point
what is a Join Point?

Fig 5. http://2.bp.blogspot.com/-KPr3lQ2BMgE/TatFHX8DzbI/AAAAAAAABIM/wFV0h4M1gbY/s1600/poa3.JPG

cross-cutting
concepts

System’s basic
functionality

Advices
What is an Advice?

● Actions taken at a given Join
Point.

● Can be seen as methods that
are executed when a certain
Join Point with matched Cut
Point is reached in the
application to add extra code.

Fig 5. http://2.bp.blogspot.com/-KPr3lQ2BMgE/TatFHX8DzbI/AAAAAAAABIM/wFV0h4M1gbY/s1600/poa3.JPG

cross-cutting
concepts

System’s basic
functionality

Advice Types

● Before Advice
○ Executed before the Join Point method.

● After Advice
○ Executed when the Join Point method finished whether normally or by an exception.

● Return Advice
○ Executed when the Join Point method finished normally.

● Throwing Advice
○ Executed when the Join Point method finished by an exception.

● Around Advice
○ Can be seen as the All-In-Advice. Can manage Join Point methods call and advices

surrounding them

What type of advice would you use to apply
authentication?

● Before Advice
● After Advice
● Return Advice
● Throwing Advice
● Around Advice

Cut Point

http://stackoverflow.com/questions/15447397/spring-aop-wh
ats-the-difference-between-joinpoint-and-pointcut

● Instruction that matches a
JoinPoint by regular
expressions

● Defined on Aspect Class

class ExampleBussinessClass {

public Object doYourBusiness() { return new Object(); } }

@Aspect

class SomeAspect {

@Pointcut("execution(*

com.amanu.example.ExampleBussinessClass.doYourBusiness())")

public void somePointCut() { }//Empty body suffices

@After("somePointCut()")

public void afterSomePointCut() { //Do what you want to do

before the joint point is executed }

@Before("execution(* *(*))") public void beforeSomePointCut() {

//Do what you want to do before the joint point is executed } }

According to the Join Points model, the
behaviour of system methods can be altered
by advices at:

● Precompile time only
● Mostly at runtime

Introduction
What is an Introduction?

● Allows adding new attributes or
methods to existing classes.

● Python Example.

PROGRAMMING EXAMPLES

PROGRAMMING EXAMPLES

from Logging import Logger
class User:

 def __init__(self,name,password):
 self.name = name
 self.password = password

 @Logger.logMethod
 def sayHi(self):
 return "Hi"

 @Logger.logMethod
 def sayGoodBye(self):
 return "Goodbye"

Puntos de Corte

Puntos de Corte
Consejo

Consejo

PROGRAMMING EXAMPLES

import functools

class Logger:

 @staticmethod
 def logMethod(func):
 @functools.wraps(func)
 def decorator(self, *args, **kwargs):
 func(self, *args, **kwargs)
 attr = dir(self)
 if "logger" not in attr:
 self.logger = []
 if func.func_name == "sayHi":
 self.logger.append(self.name + " said Hi")
 if func.func_name == "sayGoodBye":
 self.logger.append(self.name + " said GoodBye")

 return decorator

Introducción

PROGRAMMING EXAMPLES

from User import User
from Logging import Logger

logger = Logger()

neill = User("Neill",1234)
ivan = User("Ivan",1234)
pancho = User("Pancho",1234)
ignacio = User("Ignacio",1234)
sara_abril = User("Sara Abril",1234)

neill.sayHi()
ivan.sayHi()
pancho.sayHi()
ivan.sayGoodBye()
ignacio.sayHi()

Punto de Corte

neill.sayGoodBye()
sara_abril.sayHi()
pancho.sayGoodBye()
ivan.sayHi()
sara_abril.sayGoodBye()
pancho.sayHi()
ivan.sayGoodBye()

logger.get_logs(pancho)

What crosscut-concerns were present at the
previous example

● User Method SayHi
● Logging
● LogMethod Advice

Target
What is a Target?

They are the object on which
advices are applied. Spring AOP is
implemented using runtime proxies
so this object is always a proxied
object. What is means is that a
subclass is created at runtime
where the target method is
overridden and advices are
included based on their
configuration.

Proxy
What is a Proxy?

A Proxy is the object that is created
or extended by adding an advice to
a Target Object in a Join Point.

Weaving
what is a weaver?

Metaprogramming utility

It is the process of linking aspects
with other objects to create the
advised proxy objects. This can be
done at compile time, load time or
at runtime.

https://upload.wikimedia.org/wikipedia/commons/thumb/0/03/
AspectWeaver.svg/300px-AspectWeaver.svg.png

http://www.epidataconsulting.com/tikiwiki/show_image.php?id=155

It doesn’t matter which language is used for
specifying and implementing aspects and
components ?

● True
● False

Development Example

PROGRAMMING EXAMPLES

PROGRAMMING EXAMPLES

<bean id="customerService" class="example.com.CustomerService">
 <property name="name" value="Neill Giraldo" />
 <property name="url" value="www.neillgiraldo.com" />
</bean>

<bean id="customerService2" class="example.com.CustomerService">
 <property name="name" value="Ivan Vanegas" />
 <property name="url" value="www.ivanvanegas.org" />
</bean>

package example.com;

public class CustomerService {
 private String name;
 private String url;

 public void printName() {
 System.out.println("Customer name : " + this.name);
}

public void printURL() {
 System.out.println("Customer website : " + this.url);
}

Punto de Enlace

Punto de Enlace

PROGRAMMING EXAMPLES

import java.lang.reflect.Method;

import example.com.CustomerService;
import org.springframework.aop.MethodBeforeAdvice;

public class CheckUrl implements MethodBeforeAdvice
{
 @Override
 public void before(Method method, Object[] args, Object target)
 throws Throwable {
 if(method.getName().equals("printURL")) {
 CustomerService h = (CustomerService) target;
 String[] values = (h.getUrl()).split("\\.");
 if(values[2].equals("com")){
 System.out.println("Valid URL: "+h.getUrl());
 }else{
 System.out.println("Invalid URL: "+h.getUrl());
 h.setUrl("");
 }}}}

PROGRAMMING EXAMPLES

public static void main(String[] args) {
 ApplicationContext appContext = new ClassPathXmlApplicationContext(
 new String[] { "Spring-Customer.xml" });

 String[] ids = {"customerServiceProxy","customerServiceProxy2"};

 for(String id: ids) {

 CustomerService cust = (CustomerService) appContext.getBean(id);

 System.out.println("*************************");
 cust.printName();
 System.out.println("*************************");
 cust.printURL();
 System.out.println("*************************");
 try {cust.printThrowException();
 } catch (Exception e) { e.printStackTrace()}}}

Punto de Corte

Punto de Corte

PROGRAMMING EXAMPLES

<bean id="CheckUrlBean" class="advices.CheckUrl" />

<bean id="customerServiceProxy"
 class="org.springframework.aop.framework.ProxyFactoryBean">

 <property name="target" ref="customerService" />

 <property name="interceptorNames">
 <list>
 <value>CheckUrlBean</value>
 </list>
 </property>
</bean>

<bean id="customerServiceProxy2"
 class="org.springframework.aop.framework.ProxyFactoryBean">

 <property name="target" ref="customerService2" />

 <property name="interceptorNames">
 <list>
 <value>CheckUrlBean</value>
 </list>
 </property>
</bean>

Advantages & Disadvantages

Advantages

● High Modularity, easy coupling of
components and aspects

● High quality software development,
permitting sophisticated methodologies
such as run-time system redesign

● Cost of new technologies introduction on
development processes

● Not yet known or accepted commercially

Disadvantages

Criticism

Criticism

● Obscure Control Flow - Come From Statement.
○ Code not as easy to read

● Undermines
○ Code Structure

● Impedes
○ Code understandability
○ Independent Development

Conclusions

Conclusions

● AOP is a very new programming paradigm which challenges old-fashioned
abstraction and design approaches for software development while providing
an extension for clear modularization of functional and nonfunctional
requirements concerns

● AOP takes into consideration such important features of a system as
data-details and execution flow of basic functionalities for achieving high
separation of responsibilities but letting them, at the same time, be coupled
interactively via the weavers technology language specifications.

Thank you
Programming Languages Course, 2017-1, Universidad Nacional de Colombia

Exercise Review

Bibliography
1.

Other consulted websites:

http://ferestrepoca.github.io/paradigmas-de-programacion/poa/poa_teoria/index.html
http://ferestrepoca.github.io/paradigmas-de-programacion/poa/poa_teoria/index.html
http://includeblogh.blogspot.com.co/search?q=Programaci%C3%B3n+Orientada+a+Aspectos
http://includeblogh.blogspot.com.co/search?q=Programaci%C3%B3n+Orientada+a+Aspectos
https://es.slideshare.net/wfranck/programacin-orientada-a-aspectos-poa
https://es.slideshare.net/wfranck/programacin-orientada-a-aspectos-poa

