
Concurrent
programming in
Rust

A Journey into Fearless Concurrency

{

}
Juan Camilo Garcia Martinez
Daniel Alejandro Melo Nuvan
Elian Gonzalez Ordóñez
Camilo Arturo Echeverry Ayala

What's on this journey?

Overview of the Rust programming language!

How to setup your coding playground with
Rust.

A different way of thinking about memory.

01

02

03

Rust: not just a Metal Oxide

Getting Rusty

Memory Management in Rust

Rust: not just a
metal oxide

01

Overview of the Rust programming language!

{

} ..

..

Overview of rust

No extra operations
as it's memory safe
through ownership,
borrowing and
lifetimes,

Static and strong
typing, designed to
catch type errors on
compile time.

Designed for a
fluent experience in
threads management
and communication.

Performant

Type safe
Concurrent

...

On the time machine…

2006-2010
Rust conception
and development

First Rust version
release
2015

2018
Better tooling and
mayor improvements

Rust foundation
establishment

2021

*{

}

What it's used for?

Useful program
with a CLI
interface.

Aims to produce
software for the
hardware.

Building and
maintenance of
websites.

Programs that
communicate
across network.

CLI tools

Web
development

Systems
programming

Network
programming

Rust
primitives

{

}...

Rust
functions{

}

Rust
conditionals

{

}...

￼

Rust
loops{

}

Rust
matches

{

}...

￼

Rust
structures{

}

Getting Rusty

02

How to setup your coding playground with Rust.

{

} ..

..

But, how it's installed?

Rust build and package
manager, automatically
installed with Rustup.

Rust installer and
version management tool

Rustup Cargo{

}

*

Start a new project

Start new project with cargo new
<project-name>:

Generates:
Cargo.toml: metadata of the project
src/main.rs: application code

Hello world project with cargo new

} ..

And the
libraries?,
installing
crates
Install with cargo add
<package-name> from
creates.io, the version is
saved in Cargo.toml file

*

https://crates.io/

Integrations

Memory Management in
Rust

03

A different way of thinking about memory.

{

} ..

..

Mutability

● Mutable: The compiler allows the
variable to be written to and read
from.

● Immutable: The compiler only
allows the variable to be read
from.

Values fall into two
types:

*

Memory Management: Ownership

Three ways:

● Explicit allocation and
releasing of memory.

● Garbage collection
● Rust uses a third approach:

memory is managed through a
system of ownership

Rules of Ownership

1. A variable called its
"owner".

2. Only one owner at a time.
3. When the owner goes out of

scope, the value will be
dropped.

*
When s comes into scope, it is valid. it remains
valid until it goes out of scope.

Scope-Based Resource Management

Rust uses the end of scope as
the place to deconstruct and
deallocate a resource.

This is called a drop.

*

Move semantics and Ownership

When doing assignments or passing
function arguments by value (not
reference), the ownership of the
resources is transferred.

This is called a move.

*

Borrowing

You can borrow ownership.

Instead of passing objects by value,
we can pass these objects by
reference.

The borrow checker guarantees that
references always point to valid
objects.

All of this ensures that programs are
memory safe.

*

Jupyter
Notebook!
Access live Rust code with the shown
concepts here : Notebook

*

http://nbviewer.jupyter.org/url/ferestrepoca.github.io/paradigmas-de-programacion/progconcurrente/tutoriales/Rust_2023_02/RustTutorial.ipynb

● Drawing Skill. Building Image. Retrieved from
https://www.drawingskill.com/art/39893

● JetBrains. Rust in the Dev Ecosystem. Retrieved from
https://www.jetbrains.com/lp/devecosystem-2021/rust/

● Brson. A Guide to Rust Syntax. Retrieved from
https://gist.github.com/brson/9dec4195a88066fa42e6

● OpenAI. Chat GPT as a powered Search Engine. Retrieved from
https://chat.openai.com/

Resources

