Concurrent
programming 1in
Rust

A Journey into Fearless Concurrency

Juan Camilo Garcia Martinez
Daniel Alejandro Melo Nuvan
Elian Gonzalez Ordofiez

Camilo Arturo Echeverry Ayala

What's on this journey?

01

Overview of the Rust programming language!

02 Getting Rusty

How to setup your coding playground with
Rust.

©3 Memory Management in Rust
A different way of thinking about memory.

01 { ..

Rust: not just a
metal oxide

Overview of the Rust programming language!

Overview of rust

Performant

No extra operations
as it's memory safe
through ownership,
borrowing and
lifetimes,

Type safe

Static and strong
typing, designed to
catch type errors on
compile time.

Concurrent

Designed for a
fluent experience 1in
threads management
and communication.

On the time machine..

2006-2010
Rust conception Better tooling and
and development mayor Timprovements

T*

First Rust version
release
2015

*

Rust foundation
establishment
2021

What 1t's used

CLI tools

Useful program
with a CLI
interface.

Web

development
Building and
maintenance of
websites.

for?

Systems
programming

Aims to produce
software for the
hardware.

Network

programming
Programs that
communicate
across network.

Rust
orimitives

// Primitive types

Signed integers: int, i8, 116, 132, ié4
Unsigned integers: uint, u8, ulé, u32, ub4
Floating point: f32, fé4

Characters: char

Boolean: bool

// Hexadecimal, octal and binary prefixing
0x, 0o, Ob

1
2
3
4
D
6
7
8
9

1 //functions
2 fn <name>(<args>) — <return type> { RUSt
3 <statements>

4} functions

{

Rust
conditionals

// Rust conditional statements

if <condition> { <statements> }

else if <condition> { <statements> }
else { <statements> }

// Rust loops
Tloop {
// Loop until break

<statements> R _t
} us

// Rust for loop
for <var> in <iterable> {

: <statements> -L O O p S

// Rust while loop

while <condition> {
// Loop until condition is false
<statements>

1
2
3
%4
5
6
7
8
G/

2D
P o

{

Rust
matches

// Rust match statement

match <value> {
<patternl> | ... | <patternN> = <statements>,
<patternl> | ... | <patternM> = <statements>,

000
// Rust structs
struct <name> { { RUSt
<fieldl>: <typel>,
<field2>: <type2>, S t U CtU Fes

02 { ..

Getting Rusty

How to setup your coding playground with Rust.

—=-)

But, how 1t's 1nstalled?

Rustup

Rust installer and
version management tool

Cargo

Rust build and package
manager, automatically
installed with Rustup.

Start a new project

Start new project with cargo new
<project-name>:

Generates:
Cargo.toml: metadata of the project

src/main.rs: application code

Hello world project with cargo new

And the
libraries?
installing
crates

Install with cargo add
<package-name> from
creates.io, the version is
saved in Cargo.toml file

o

& crates.io Menu +

The Rust community’s crate registry

* Install cargo [Getting Started

Instantly publish your crates and install them. Use the API to
interact and find out more information about available crates.
Become a contributor and enhance the site with your work.

46,066,201,273 ™
Downloads F:L]

—J

130,955 (13

New Crates

bndl_convert
1.0.(

prinThor

https://crates.io/

Integrations

03 { ..

Memory Management 1n
Rust

A different way of thinking about memory.

==-)

Mutability

fn main() {
let mut x = 5;
let y = 10;

_: The compiler allows the
variable to be written to and read

from.

e Immutable: The compiler only
allows the variable to be read
from.

X = 13;
println!("x= {} v = {}", X, ¥);

}

1
2
3
4 println! ("{}", x);
5
6
74
8

——=c %*

Memory Management: Ownership

e Explicit allocation and
releasing of memory.

e Garbage collection

e Rust uses a third approach:
memory 1is managed through a
system of ownership

Rules of Ownership

1. A variable called 1its

"owner". 00
q fn main() {
2. Only one owner at a time. T e
3. When the owher goes out of 3 let s = "hello”; //valid from here
. // do stuff with s
Scope) the Va-l-ue W1 -l--l- be 5 } //this scope is now over, and s is no longer valid
dropped. J

When s comes 1into scope, it is valid. it remains
valid until it goes out of scope.

=s=c *

Scope-Based Resource Management

Rust uses the end of scope as
the place to deconstruct and
deallocate a resource.

This is called a drop.

1 struct Bar {
2 x: 32,
3}

4

5 struct Foo {
bar: Bar

7 1

[+}

9 fn main(){

10 let foo = Foo { bar: Bar{ x: 42 }};
11 println!("{}", foo.bar.x);

12 // foo is dropped first

13 // Then foo.bar is dropped

14 }

Move semantics and Ownership

When doing assignments or passing

function arguments by value (not ° .fn.foo(s: String) {
reference), the ownership of the L
resources is transferred. .
5 fn main() {
Th_is _is Ca-L-Led a move. 7 let s = String::from(“Hello, world!");

foo(s);

//println! (“{}", s); will not compile

Borrowing

You can POREOWNOWNSESHIY -

Instead of passing objects by value,
we can pass these objects by
reference.

The borrow checker guarantees that
references always point to valid
objects.

All of this ensures that programs are
memory safe.

Jupyter

Notebook!

Access live Rust code with the shown

concepts here :

Notebook

http://nbviewer.jupyter.org/url/ferestrepoca.github.io/paradigmas-de-programacion/progconcurrente/tutoriales/Rust_2023_02/RustTutorial.ipynb

Resources

e Drawing Skill. Building Image. Retrieved from
https://www.drawingskill.com/art/39893

e JetBrains. Rust in the Dev Ecosystem. Retrieved from
https://www.jetbrains.com/lp/devecosystem-2021/rust/

e Brson. A Guide to Rust Syntax. Retrieved from
https://gist.github.com/brson/9dec4195a88066fa42e6

e OpenAI. Chat GPT as a powered Search Engine. Retrieved from
https://chat.openai.com/

